

SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE OUTLINE:	MICROWAVE AND SATELLITE COMMUNICATIONS			
CODE NO.:	ELN316-5			
PROGRAM:	ELECTRONICS TECHNICIAN/TECHNOLOGY			
SEMESTER:	FIVE			
DATE:	APRIL 1997			
AUTHOR:	DOUG FAGGETTER			
	NEW: REV.:_ A			
APPROVED:	COORDINATOR DATE			
	BL MAY 30/97			

DATE

DEAN

COURSE NAME CODE NO.

MICROWAVE AND SATELLITE COMMUNICATIONS ELN316

TOTAL CREDIT HOURS: 5

PREREQUISITE(S): ELN245, ELR309

PHILOSOPHY/GOALS:

THIS COURSE WILL GIVE THE STUDENT A THOROUGH KNOWLEDGE OF THEORY AND OPERATION OF PASSIVE AND ACTIVE COMPONENTS EMPLOYED IN MICROWAVE EQUIPMENT. LABORATORY WORK INCLUDES THE EXPERIMENTAL GENERATION OF MICROWAVE SIGNALS AND THEIR TESTING WITH WAVEGUIDE HARDWARE. ALSO INCLUDED ARE MICROWAVE CIRCUIT CONSTRUCTION PROJECTS.

STUDENT PERFORMANCE OBJECTIVES:

UPON SUCCESSFUL COMPLETION OF THIS COURSE, THE STUDENT WILL:

- 1. HAVE A FUNDAMENTAL KNOWLEDGE OF ELECTROMAGNETIC FIELD THEORY AND BE ABLE TO APPLY IT TO THE SOLUTION OF TRANSMISSION LINE PROBLEMS.
- 2. UNDERSTAND THE OPERATION OF WAVEGUIDES AND APPLY FORMULAS TO THE SOLUTION OF PROBLEMS.
- 3. BE ABLE TO USE THE SMITH CHART IN THE SOLUTION OF TRANSMISSION LINE PROBLEMS.
- 4. HAVE OF FUNDAMENTAL KNOWLEDGE OF MICROWAVE NETWORK PARAMETERS AND APPLY IT TO THE SOLUTION OF PROBLEMS.
- 5. BE FAMILIAR WITH VARIOUS TYPES OF MICROWAVE COMPONENTS AND HOW THEY OPERATE.
- 6. BE FAMILIAR WITH VARIOUS TYPE OF MICROWAVE TUBES AND HOW THEY OPERATE.
- 7. BE FAMILIAR WITH VARIOUS TYPES OF MICROWAVE ANTENNAS AND HOW THEY OPERATE.

MICROWAVE AND SATELLITE COMMUNICATIONS

CODE NO.

ELN316

TOPICS TO BE COVERED:

- 1. INTRODUCTION TO MICROWAVES
- 2. CIRCUITS AND FIELDS
- 3. TRANSMISSION LINES
- 4. WAVEGUIDES AND RESONATORS
- 5. SMITH CHART
- 6. MICROWAVE NETWORK PARAMETERS
- 7. SOLID-STATE MICROWAVE DEVICES
- 8. MICROWAVE COMPONENTS
- 9. MICROWAVE TUBES
- 10. ANTENNAS

REQUIRED TEXTBOOK:

MICROWAVE THEORY COMPONENTS AND DEVICES BY- JOHN A. SEEGER (PRENTICE HALL 1986)

CODE NO.

MICROWAVE AND SATELLITE COMMUNICATIONS

ELN316

LEARNING ACTIVITIES

RECTANGULAR WAVEGUIDE

RECTANGULAR WAVEGUIDE

4.4 CIRCULAR WAVEGUIDES
4.5 WAVEGUIDE CAVITIES

4.2 POWER IN A RECTANGULAR WAVEGUIDE 4.3 TRANSVERSE MAGNETIC MODES IN A

REQUIRED RESOURCES

1 INTRODUCTION TEXT: CHAPTER 1 1.1 MICROWAVE FREQUENCIES 1.2 HISTORY 1.3 APPLICATION OF MICROWAVES 1.4 UNITS 1.5 CO-ORDINATE SYSTEMS 2 CIRCUITS AND FIELDS TEXT: CHAPTER 2 2.1 CIRCUIT THEORY 2.2 ELECTROMAGNETIC FIELDS 2.3 HIGH FREQUENCY EFFECTS 3 TRANSMISSION LINES TEXT: CHAPTER 3 3.1 STEP INPUT TO A TRANSMISSION LINE 3.2 AC SOLUTION FOR A TRANSMISSION LINE 4 WAVEGUIDES AND RESONATORS TEXT: CHAPTER 4 4.1 TRANSVERSE ELECTRIC MODES IN A

CODE NO.

MICROWAVE AND SATELLITE COMMUNICATIONS

ELN316

LEARNING ACTIVITIES

REOUIRED RESOURCES

5	SMITH CHART	TEXT:	CHAPTER	6
5.1	DETERMINATION OF INPUT IMPEDANCE			
5.2	USE OF THE SMITH CHART WITH ADMITTANCE			
5.3	SINGLE STUB MATCHING USING THE SMITH			
	CHART			
5.4	DOUBLE STUB MATCHING			
5.5	DETERMINING IMPEDANCE USING THE SMITH			
	CHART AND THE SLOTTED LINE			
5.6	SMITH CHART AND POWER			
5.7	LOSSY LINES			
5.8	FREQUENCY AND THE SMITH CHART			

- 6 MICROWAVE NETWORK PARAMETERS
- 6.1 TWO PORT PARAMETERS
- 6.2 ABCD PARAMETERS
- 6.3 SCATTERING PARAMETERS
- 6.4 PROPERTIES OF S-PARAMETERS
- 6.5 CHANGE OF PORT POSITION
- 6.6 SCATTERING TRANSFER PARAMETERS
- 6.7 SIGNAL FLOW GRAPHS
- 7 MICROWAVE COMPONENTS
- 7.1 COAXIAL LINES
- 7.2 WAVEGUIDE SECTIONS
- 7.3 WAVEGUIDE REACTIVE ELEMENTS
- 7.4 TERMINATIONS
- 7.5 ATTENUATORS
- 7.6 PHASE SHIFTER
- 7.7 WAVEGUIDE TEES
- 7.8 MAGIC TEES
- 7.9 DIRECTIONAL COUPLER
- 7.10 ISOLATOR
- 7.11 CIRCULATOR

TEXT: CHAPTER 7

TEXT: CHAPTER 8

CODE NO.

MICROWAVE AND SATELLITE COMMUNICATIONS ELN316

LEARNING ACTIVITIES		REQUIRED		RESOURCES	
8.2	SOLID-STATE MICROWAVE DEVICES SEMICONDUCTOR CONCEPTS MICROWAVE APPLICATIONS OF SEMI-CONDUCTOR DIODES	TEXT:	CHAPTER	11	
	PASSIVE DIODE DEVICES MICROWAVE TRANSISTORS				
9.1 9.2	MICROWAVE TUBES LINEAR BEAM MICROWAVE TUBES CROSSED-FIELD TUBES MILLIMETER-WAVE TUBES	TEXT:	CHAPTER	10	
10.2	ANTENNAS PROPERTIES OF ANTENNAS DIPOLE ANTENNA	TEXT:	CHAPTER	9	

- 10.3 HORN ANTENNA
- 10.4 PARABOLIC REFLECTOR ANTENNAS
- 10.5 LENS ANTENNA
- 10.6 SLOT ANTENNA
- 10.7 POLYROD ANTENNA
- 10.8 HELICAL ANTENNA
- 10.9 FREQUENCY-INDEPENDENT ANTENNA
- 10.10 ANTENNA ARRAYS

CODE NO.

MICROWAVE AND SATELLITE COMMUNICATIONS

ELN316

EVALUATION PROCEDURES

- 1. TESTING WILL CONSIST OF BOTH THEORY AND PRACTICAL COMPONENTS. AT LEAST ONE WEEK NOTICE WILL BE GIVEN FOR ALL MAJOR TESTS.
- 2. QUIZZES MAY BE GIVEN FROM TIME TO TIME WITHOUT NOTICE.
- 3. THE GRADING WEIGHT WILL BE:

THEORY - 70% LAB - 30%

TOTAL - 100%

4. THE GRADING SYSTEM WILL BE AS FOLLOWS:

A+ = 90 - 100% A = 80 - 90% B = 70 - 79% C = 55 - 69%

R = REPEAT

5. THE STUDENT MUST ATTAIN A 55% IN BOTH THEORY AND LAB PORTIONS TO SUCCESSFULLY COMPLETE THE COURSE.

SPECIAL NOTES:

- 1. LAB ATTENDANCE IS COMPULSORY AND IS INCLUDED IN THE EVALUATION PROCESS.
- 2. THE INSTRUCTOR RESERVES THE RIGHT TO MODIFY THE COURSE TO MEET THE NEEDS OF THE STUDENTS.

BWOLTAD COMMON SINGLATIONS DAY

PROPERTY OF THE PROPERTY OF THE PARTY OF THE

THE PARTY AND LANGUAGE COME THOUGHT MITTOR TO DETRICK THE DESIGNATION OF THE PROPERTY OF THE PARTY OF THE PAR

LABORTON TOOKSTR BRIT OF THEIR ROWS MINER HAVE AND LOND.

PART TO A MANUAL PROPERTY OF THE PART OF T

PERCENTAGE AND THE STATE WORLD'S CONTROL OF THE

PER TENER MAD CHAR YECHTE MOOR DE MONTO AND ANTONOMINE TONOMINE MONTO PROPERTO PROPE

PERSONAL TRANSPORT

THE STATE OF THE RESERVED TO MAKE THE COMPLETE OF THE COMPLETE OF THE PROPERTY.